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ABSTRACT

We explore the dynamics of a nanoscale doubly clamped beam that is under high tension, immersed in a viscous fluid, and driven externally
by a spatially varying drive force. We develop a theoretical description that is valid for all possible values of tension, includes the motion of
the higher modes of the beam, and accounts for a harmonic force that is applied over a limited spatial region of the beam near its ends. We
compare our theoretical predictions with experimental measurements for a nanoscale beam that is driven electrothermally and immersed in
air and water. The theoretical predictions show good agreement with experiments, and the validity of a simplified string approximation is
demonstrated.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0100462

I. INTRODUCTION

The dynamics of small elastic beams immersed in a viscous
fluid are at the heart of many important technologies.1,2 Typical
devices using doubly clamped beams composed of silicon nitride
possess varying degrees of tension and exhibit a fundamental mode
of oscillation with a natural frequency in the megahertz range and
a spring constant of the order of 1 N/m. However, when the beam
is immersed in a viscous fluid, the frequency of the fundamental
peak shifts to a lower frequency, and the quality factor of the oscil-
lation reduces significantly.3–5 These reductions in performance
become significantly larger when the viscosity and the density of
the fluid are appreciable as in the case of water. These reductions
become even more significant when the dimensions of the beam
are uniformly decreased from the microscale down to the nano-
scale.4,5 These issues have led to interesting solutions, such as the
use of the higher modes of oscillation to increase the frequency of
the measurement,6–8 tailoring of the beam geometry to improve
performance,9 using paddle shaped nanoscale cantilevers to drasti-
cally reduce stiffness,4,5,10 and placing the fluid of interest inside of
the oscillating cantilever rather than immersing the cantilever in
the fluid to significantly increase the quality factor.11

From a broad point of view, device performance for many
applications improves if the frequency representing the peak of the
amplitude spectrum can be increased. In essence, with an increase
in frequency, the energy stored by the fluid and solid system
increases more than energy lost by dissipation due to the viscous
fluid per oscillation.3,5,12 The end result is an oscillator with a
higher quality. One accessible way to increase the frequency of
oscillation, without changing the beam geometry or composition, is
to include a tension force.8 For example, a doubly clamped beam
with tension can be the result of the fabrication process or an
intrinsic property of the material.13,14 Including a tension force in
addition to rigidity has several favorable outcomes, which can be
drawn from the following observations: (i) the natural frequencies
of all of the modes will increase, (ii) the relative natural frequencies
are closer together in the frequency domain, (iii) the relative stiff-
ness of the different modes is closer together, and (iv) the quality
factor of the oscillations will increase. (ii) and (iii) are important
since they reduce the range of measurements that are required in
an experiment. (ii) reduces the frequency range that must be
resolved in an experiment. (iii) reduces the required range of beam
displacements that must be resolved in an experiment. Last, (iv) is
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useful since higher quality factors are desirable experimentally due
to the more defined peak that results in a measurement of the
amplitude as a function of frequency.

The relative magnitude of the peaks in the amplitude spec-
trum, for the different modes of oscillation, depends on how the
beam is driven and also on the interactions with the surrounding
fluid. Small beams can be driven by Brownian motion alone or the
beams can also be driven externally. There is significant interest in
the stochastic motion of small elastic objects in a viscous fluid.3,4

However, due to the increased stiffness of the higher modes, the
magnitude of the amplitude of oscillations for the higher modes,
when driven thermally, is very small. The theory we describe here
could be extended to this case but we do not explore this here.
Typically, when a beam is driven externally, the magnitude of the
deflections is well above the Brownian fluctuations of the beam and
the dynamics are treated deterministically. In this paper, we treat
this case and focus our attention on small beams that are driven
externally where the external drive force can be tailored to yield
favorable magnitudes of oscillation in an experiment. In particular,
we consider a doubly clamped beam that is driven near its attach-
ment points by a spatially varying drive force.

One approach used in the literature to achieve a spatially
varying harmonic driving force is electrothermal actuation.13–15

The essential idea is to heat the two ends of the beam using an
electric current through a typically U-shaped gold wire by Joule
heating. The localized heating causes a temperature gradient that
results in a stress gradient due to the differential amount of
thermal expansion that occurs in the solid material composing the
beam. This generates a bending moment, which yields flexural
deflections. By driving the current harmonically in time, it is possi-
ble to drive the beam at a chosen frequency and then sweep over a
wide range of frequencies of interest. This approach has been dem-
onstrated to be very effective in driving the flexural oscillations of
small beams at frequencies of over 200MHz.15

In this paper, we quantitatively explore these ideas for a wide
range of conditions where we pay particular attention to the role of

tension on the beam dynamics and the influence of the external
driving. We explore a doubly clamped beam that is immersed in a
viscous fluid and driven externally by a spatially varying drive
force. We develop a theoretical description that is valid for all
values of tension in the beam, which is bounded by an Euler–
Bernoulli beam in the absence of tension and by a string descrip-
tion where tension dominates contributions from elasticity. We
compare our theoretical predictions with experimental measure-
ments for an electrothermally driven beam under high tension.

II. THEORY

We are interested in the dynamics of a microscale elastic beam
with tension that is immersed in a viscous fluid and driven exter-
nally by a spatially varying harmonic drive force. A schematic is
shown in Fig. 1 that represents the general configuration we con-
sider. The doubly clamped beam has length L, width b, and thick-
ness h. The axial distance along the beam is the x direction,
transverse to the beam is the z direction, and the y direction (not
shown) is into the page. The harmonic driving force has a constant
magnitude F0 and is applied over the spatial regions specified by
the constants ξL and ξR. The flexural displacement of the beam at
position x and time t is given by W(x, t).

In our study, we will use the beam geometry and material
properties given in Table I. Although specifying a particular beam
geometry is not necessary for the development of the theory, it
allows us to provide dimensional diagnostics regarding this beam
over a wide range of conditions. This beam is also typical of a
nanoscale beam fabricated from silicon nitride that has been used
in development of new technologies.13,14 We will quantify the
dynamics of this beam as a function of the tension in the beam
and for a varying spatial extent of the external forcing. Last, this
particular beam geometry is precisely the one used in our experi-
mental investigation that is described in Sec. III. By introducing the
geometry and material properties now we will tailor our discussion
toward the comparison between theory and experiment. In our the-
oretical development, we will pay close attention to the influence of
tension, ξL, ξR, and F0 on the dynamics of the beam.

For a long and thin beam, L � b � h, that is under tension,
the flexural deflections are described by

EI
@4W(x, t)

@x4
� FT

@2W(x, t)
@x2

þ μ
@2W(x, t)

@t2
¼ Ff (x, t)þ Fd(x, t),

(1)

where E is Young’s modulus, I ¼ bh3=12 is the area moment of

FIG. 1. A schematic of the doubly clamped beam with a spatially varying
driving force. The beam has a length L, width b (into the page), and thickness h
with axial coordinate x, transverse coordinate z, and the remaining coordinate y
is into the page. The harmonic driving force has a constant magnitude F0 and
is applied near the left and right ends of the beam over the spatial regions spec-
ified by the constants ξL and ξR .

TABLE I. Geometry and material properties. The doubly clamped beam has length
L, width b, thickness h, density ρs, and Young’s modulus E. We will consider this
beam immersed in air or water. For the fluid density ρf and dynamic viscosity μf we
use: for air ρf = 1.23 kg/m

3, μf ¼ 1:79� 10�5 kg
m s; for water ρf = 997.8 kg/m

3,
μf ¼ 9:53� 10�4 kg

m s.

L b h ρs E
(μm) (μm) (μm) (kg/m3) (GPa)

40 0.90 0.10 2960 300
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inertia, FT is the tension force, μ ¼ ρsbh is the mass per unit
length, Ff (x, t) is the fluid force per unit length acting on the
beam, and Fd(x, t) is the spatially varying driving force per unit
length. In the absence of tension, FT ¼ 0, and Eq. (1) reduces to an
Euler–Bernoulli beam immersed in a fluid. The doubly clamped
beam satisfies fixed boundary conditions such that
W(0, t) ¼ W(L, t) ¼ dW(0, t)

dx ¼ dW(L, t)
dx ¼ 0. It will be convenient to

introduce a nondimensional axial coordinate x* ¼ x=L while
leaving time as dimensional to yield

EI
L4

@4W(x*, t)
@x*4

� FT
L2

@2W(x*, t)
@x*2

þ μ
@2W(x*, t)

@t2
¼ Ff (x*, t)þ Fd(x*, t):

(2)

For the boundary conditions, this yields W(0, t)
¼W(1, t)¼ @W(0, t)

@x* ¼ @W(1, t)
@x* ¼ 0. In what follows, we will assume

that x is nondimensional and drop the * notation to simplify the
notation.

A. The natural frequencies and mode shapes of a
beam with tension

The analysis of a beam with tension has been described in
detail elsewhere8,15 and we provide only the essential details in
support of our discussion. The natural frequencies and mode
shapes are found for the case of no damping and no driving
[setting Ff ¼ Fd ¼ 0 in Eq. (2)] and assuming that for each mode,
we can express the solution as Wn(x, t) ¼ Yn(x) eiωnt , where n is the
mode number, Yn(x) is the nth mode shape, and ωn is the nth
natural frequency. Substituting this solution into Eq. (2) for these
conditions yields

EI
L4

d4Yn(x)
dx4

� FT
L2

d2Yn(x)
dx2

� μω2
nYn(x) ¼ 0, (3)

which has the solution16

Yn(x) ¼ c1,n sinh (Mnx)þ c2,n cosh (Mnx)þ c3,nsin(Nnx)

þ c4,ncos(Nnx), (4)

where the mode shapes Yn(x) are orthogonal,

Mn ¼ U þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ Ω2

n

q� �1=2
, and Nn ¼ �U þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þΩ2

n

q� �1=2
.

The nondimensional tension parameter U is

U ¼ FT
2EI=L2

, (5)

which represents a ratio of the tension force to an elastic force
scale. The parameter U is very useful in determining the impact of
the tension on the beam. For U ¼ 0, the Euler–Bernoulli beam
result is recovered; for increasing U , a beam with tension is
described; and for U ! 1 (or equivalently E ! 0), a string
description is recovered. The nondimensional natural frequency for

mode n is

Ωn ¼ ωn

α=L2
, (6)

where α ¼ (EI=μ)1=2. Inserting Eq. (4) into Eq. (3) and rearranging
yields the characteristic equation16

ΩnþU sinh Uþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2þΩ2

n

q� �1=2
" #

sin �Uþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2þΩ2

n

q� �1=2
" #

�Ωncosh Uþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2þΩ2

n

q� �1=2" #
cos �Uþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2þΩ2

n

q� �1=2" #
¼0,

(7)

where

c1,n¼1, (8)

c2,n¼Mnsin(Nn)�Nn sinh(Mn)
Nn cosh(Mn)�cos(Nn)½ � , (9)

c3,n¼�Mn

Nn
, (10)

c4,n¼�c2,n: (11)

For a given value of the tension parameter U , the roots of Eq. (7)
yield the nondimensional natural frequencies Ωn. It will be useful
to define the normalized mode shapes as fn(x)¼ 1ffiffiffiffi

~nn
p Yn(x), where

~nn is a normalization constant whose value is given by

~nn¼
ð1
0
Yn(x)Yn(x)dx: (12)

The orthonormal mode shapes fn(x), therefore, satisfyð1
0
fn(x)fm(x)dx¼ 1, n¼m,

0, n=m:

�
(13)

The mode shapes fn of an Euler–Bernoulli beam without tension
are recovered for U¼0, and the mode shapes for a beam with
tension are quantified using a finite value of U .

The limit of the tension parameter U ! 1 indicates the dom-
inance of tension over elasticity which can also be represented as
E ! 0. Neglecting the elastic contribution by setting E ¼ 0 in
Eq. (2) yields the string equation

� FT
L2

@2W(x, t)
@x2

þ μ
@2W(x, t)

@t2
¼ Ff (x, t)þ Fd(x, t), (14)

with the no-displacement boundary conditions
W(0, t) ¼ W(1, t) ¼ 0, where the slope of the string at the bound-
aries may be non-zero. The mode shapes and natural frequencies
of the string can be found by analyzing Eq. (14) in the absence
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of the fluid interaction force and the driving force to yield
fn(x) ¼ � ffiffiffi

2
p

sin(nπx) and ωn ¼ πc
L n, where c ¼ ffiffiffiffiffiffiffiffiffiffi

FT=μ
p

is the
wave speed for the string and the minus sign is to match the con-
vention used when describing the modes of a beam in Eq. (4). This
yields ωn=ω1 ¼ n, indicating that the relative natural frequencies of
the string increase linearly with n.

The first five mode shapes fn(x) are shown in Fig. 2 as a func-
tion of U . Curves are included for an Euler–Bernoulli beam
without tension U ¼ 0 as the solid black line, beams with increas-
ing tension where U ¼ 10 (red), 100 (blue), 1000 (green), and a
string shown as the dashed line. In all panels, the curves approach
the string result as the tension is increased. It is clear that the
tension affects the mode shapes. This is very evident at the bound-
aries where the beam must approach the walls horizontally while
the string does not. This is of particular interest because it is near
these boundaries, at x ¼ 0 and x ¼ L, where the spatially varying
external drive force will be applied. Therefore, it is anticipated that
the relative magnitudes of the peaks in the amplitude spectrum will
depend upon the details of the mode shapes and their variation
with tension since this will affect how the external driving is
coupled with the beam motion.

The variation of the natural frequencies of the beam with
tension is shown in Fig. 3. Curves are included for U ¼ 0, 10,
100, 1000 and for a string (dashed line). The frequency of oscilla-
tion increases significantly with increasing tension and with
increasing mode number. In particular, the fifth mode of the beam
under very high tension has a natural frequency of over 30 MHz.
As the tension is increased, the variation of frequencies approach
the linear trend of the string. This is shown more clearly in
Fig. 3(b), which plots the variation of the normalized frequency
fn=f1 as a function of n. This illustrates how the relative separation
of the frequencies decreases toward the linear behavior as U is
increased.

Once the mode shapes are known, it is straightforward to
determine the effective mass mn and effective spring constant kn of
the modes in the usual manner5 by ensuring the kinetic energy and
potential energy of the entire beam are captured by the lumped
mode when measured at some position x0. This yields mn ¼ αnm
where αn ¼ fn(x0)

�2. The effective spring constant of mode n,
when the measurement of the displacement is made at x0, is then
kn ¼ mnω2

n. When these ideas are applied to the string, this yields

kn ¼ π2FT
Lfn(x0)

2 n2, which shows that kn increases linearly with FT at

fixed n and quadratically with n at fixed FT which can also be
expressed as kn=k1 ¼ n2.

The variation of kn with n is shown in Fig. 4(a) as a function
of U . In order to present the results of all of the modes on a single
plot, it must be understood that the measurement is taken for each
mode at the location x0 of an antinode where that mode shape
fn(x) is maximum. Specifically, x0 ¼ 1=2 for the odd modes,
x0 ¼ 1=4 for mode 2, and x0 ¼ 1=8 for mode 4. The dramatic
increase in the stiffness of the beam with increasing tension is
evident by noting that at high tension k5 � 200 N/m, which is 25
times stiffer than the fundamental mode. The relative magnitude of
kn with respect to k1 is represented in Fig. 4(b). As the tension is
increased, the separation of the spring constants with respect to k1
decreases until reaching the quadratic trend of the string. The

relative amplitude of the oscillation of a particular mode with
respect to the amplitude of the fundamental mode is given by
k1=kn. When viewed in this light, this indicates that the relative
magnitude of the oscillations of the higher modes, with respect to
the fundamental mode, decrease with increasing tension.

B. The dynamics of an externally driven beam with
tension in a viscous fluid

We now develop the solution for the dynamics of the beam
with tension in a viscous fluid that is being driven externally. It will
be convenient to transform Eq. (2) into frequency space using the
Fourier transform pair

Ŵ(x, ω) ¼
ð1
�1

W(x, t) eiωt dt, (15)

W(x, t) ¼ 1
2π

ð1
�1

Ŵ(x, ω) e�iωt dω, (16)

to yield

EI
L4

@4Ŵ(x, ω)
@x4

� FT
L2

@2Ŵ(x, ω)
@x2

� μω2Ŵ(x, ω) ¼ F̂f (x, ω)þ F̂d(x, ω):

(17)

The force due to the fluid can be expressed as3,12

F̂f (x, ω) ¼ π

4
ρfω

2b2Γ(ω)Ŵ(x, ω), (18)

where Γ(ω) is the complex-valued hydrodynamic function for an
oscillating blade of width b in a viscous fluid of density ρf . The
hydrodynamic function contains contributions due to the mass
loading captured by its real part and due to viscous damping cap-
tured by its imaginary part. Γ(ω) can be expressed as
Γ(ω) ¼ Ωc(ω)Γc(ω), where Γc(ω) is the hydrodynamic function of
an oscillating cylinder with diameter b and Ωc(ω) is a complex-
valued correction factor. Explicit expressions for Γc(ω) and Ωc(ω)
are given by Sader.3 In Eq. (18), we have also assumed that Γ(ω) is
independent of the mode number n, which is expected to be a
good approximation for the first several harmonics of the beam.
Acoustic radiation and axial flows may cause the dissipation to
deviate from the cylinder solution, but these are negligible for
lower harmonics.17 The generalized hydrodynamic function for
arbitrary mode number7,18 could be included if desired.

Equation (18) is valid when the Reynolds number describing
the fluid motion, Re, is small. For the case of microscale and nano-
scale elastic structures in fluid, Re � 1 due to the small amplitudes
of the oscillation even though the oscillation frequency is large. The
Reynolds number of the fluid motion generated by the motion of
mode n of the beam can be expressed as

Ren ¼
ρf Anωn,f b

2μf
, (19)

where An is the maximum amplitude of the motion of the nth

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 132, 034501 (2022); doi: 10.1063/5.0100462 132, 034501-4

Published under an exclusive license by AIP Publishing

 07 February 2024 19:20:13

https://aip.scitation.org/journal/jap


FIG. 2. The first five orthonormalized mode shapes fn(x) as a function of the amount of tension in the beam. (a)–(e) show modes 1 through 5, respectively. Each panel
has five curves: the Euler–Bernoulli beam U ¼ 0 (black, solid), U ¼ 10 (red), U ¼ 100 (blue), U ¼ 1000 (green), and the limit of a string (dashed). In all panels, the
solid lines approach the dashed line as the tension is increased.

FIG. 3. (a) A log–log plot of the variation of the first five natural frequencies fn of the beam with the mode number n as a function of the tension parameter U where
U ¼ 0 (black, solid), U ¼ 10 (red), U ¼ 100 (blue), U ¼ 1000 (green), and a string (dashed). (b) The same data plotted as fn=f1 vs n. In both panels, the curves
approach the string result in order with increasing U.
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mode, ωn,f is the frequency of oscillation at which An occurs in the
fluid, μf is the dynamic viscosity of the fluid, and the length scale
has been chosen to be the beam half width b=2. For example, in
experiments, the magnitude of the driving force is typically set to
achieve an amplitude of oscillation on the order of A1 � 1 nm and
when the fluid is air, we have the additional simplification
ωn,f � ωn. If we assume the beam in Table I has high tension and
use the string predictions as a guide, this leads to
Re1 ¼ 1:1� 10�3. Furthermore, the Reynolds number of the higher
modes decreases with increasing mode number. Although the
quantitative details change when the beam is placed in a more
viscous fluid such as water where ωn,f , ωn, the Reynolds number
of the beam remains small and it also decreases with increasing
mode number.

The quality factor of the oscillations Q can be quantified using
the hydrodynamic function. Extending the approach used in Ref. 5
for the fundamental mode to describe the quality of mode n yields

Qn �
1
T0
þ Γr(ωn,f )

Γi(ωn,f )
, (20)

where Γr and Γi are the real and imaginary parts of the hydrody-
namic function, respectively. The frequency dependence of the
added mass due to the fluid motion is given by Γr(ω), and the fre-
quency dependence of the viscous damping due to the fluid is
given by ωΓi(ω). The mass loading parameter, T0 ¼ πρf b

4ρsh
, represents

the mass of a cylinder of fluid with diameter b to the mass of the

FIG. 4. (a) A log–log plot of the first five spring constants kn with varying tension where U ¼ 0 (black), U ¼ 10 (red), U ¼ 100 (blue), U ¼ 1000 (green), and a string
(dashed) in units of N/m. For the odd modes kn is measured at x0 ¼ 1=2, for the second mode x0 ¼ 1=4, and for the fourth mode x0 ¼ 1=8. (b) The same data plotted
as kn=k1 vs n. In both panels, the results approach the string in order with increasing values of U.

FIG. 5. The variation of the quality Qn with mode number n as a function of tension for the beam of Table I immersed in (a) air and (b) water. Solid lines are shown for
U ¼ 0 (black), 10 (red), 100 (blue), 1000 (green), and the dashed line is for a string. The solid lines approach the string result in order as the tension increases.
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beam. The quality Qn is evaluated at the frequency ωn,f that yields
the maximum amplitude of mode n when driven in fluid. The
quality Qn increases with increasing values of the frequency ωn,f .
Therefore, the quality factor will increase with the addition of
tension and also with increasing mode number n.

The variation of Qn with tension is shown quantitatively in
Fig. 5 for the beam of Table I immersed in (a) air and in (b) water.
Moving from left to right in Fig. 5 illustrates the increase in the
quality factor as a function of mode number and moving vertically
illustrates the increase in the quality factor with increasing tension.
Increasing the mode number and the tension significantly increases
the quality factor of the oscillations. For example, in Fig. 5(a),
Qn goes from approximately 10 for the first mode of an
Euler–Bernoulli beam to over 150 for the fifth mode of a string.
Figure 5(b) shows the dramatic reduction in quality that occurs
when the fluid is water. However, for water, it can be seen that
Q1 & 0:5 for the Euler–Bernoulli beam and that the quality factor
increases to nearly Q1 � 1:5 by increasing the tension.

Following the approach described in Refs. 3 and 19, we solve
Eq. (17) using an expansion in terms of the normalized beam
modes,

Ŵ(x, ω) ¼
X1
n¼1

Ŵn(x, ω) ¼
X1
n¼1

f̂n(ω)fn(x), (21)

where Ŵn(x, ω) is the complex amplitude of mode n and f̂n(ω)
describes the frequency dependent amplitude of mode n. Inserting
Eq. (21) into Eq. (2) and using the orthogonality property of the
beam modes yield

f̂n(ω)ω
2
n � ω2 1þ T0Γc(ω)ð Þ f̂n(ω) ¼

1
μ

ð1
0
fn(x)F̂d(x, ω) dx, (22)

which can be solved for f̂n(ω). After rearranging, the solution for
f̂n(ω) can be expressed as

f̂n(ω) ¼
L4

EI

Ð 1
0 F̂d(x, ω)fn(x) dx

C4
n � B(ω)4

, (23)

where

B(ω) ¼ C1
ω

ω1

� �1=2

1þ T0Γ(ω)½ �1=4 (24)

and Cn ¼ Ω1=2
n . Using the final result for f̂n(ω) allows us to express

the solution for the flexural oscillations as

Ŵ(x, ω) ¼ L4

EI

X1
n¼1

Ð 1
0 fn(x

0)F̂d(x0, ω) dx0

C4
n � B(ω)4

fn(x): (25)

The magnitude of the flexural oscillations of the beam measured at
position x0 is then jŴ(x0, ω)j.

A string description can be obtained following a similar
approach by starting with Eq. (14) and using the expression for the

fluid force to yield

� FT
L2

@2Ŵ(x, ω)
@x2

� ω2 μþ π

4
ρlb

2Γ(ω)
h i

Ŵ(x, ω) ¼ F̂d(x, ω): (26)

This equation can be solved using an eigenfunction expansion, the
mode shapes of the string, and orthogonality of the mode shapes to
yield

f̂n(ω) ¼
L2

π2FT

Ð 1
0 F̂d(x, ω)fn(x) dx

n2 � B2(ω)
, (27)

where

B(ω) ¼ ω

ω1

� �
1þ T0Γ(ω)½ �1=2: (28)

We note that the expression for B(ω) in Eq. (28) is different for the
string when compared to the expression for the beam given by
Eq. (24). However, it can be seen that (B(ω)=C1)

2 of the beam
equals B(ω) of the string. The string displacement is then

Ŵ(x, ω) ¼ L2

π2FT

X1
n¼1

Ð 1
0 F̂d(x

0, ω)fn(x
0) dx0

n2 � B2(ω)
fn(x): (29)

If the explicit expressions for the string mode shapes are used, this
can also be expressed as

Ŵ(x, ω) ¼ 2L2

π2FT

X1
n¼1

Ð 1
0 F̂d(x

0, ω)sin(nπx0) dx0

n2 � B2(ω)
sin(nπx): (30)

C. Modeling a spatially varying drive force

We next consider a driving force that is constant in magnitude
that is applied harmonically at the two edges of the beam (see
Fig. 1). We will include the possibility where the driving force at
the ends of the beam can be in-phase or out-of-phase with respect
to each other. On the left side of the beam near the wall where
0 � x � ξL, we have Fd(x, t) ¼ aL

F0
L sin(ωdt). Similarly, on the

right side of the beam near the wall where ξR � x � 1, we have
Fd(x, t) ¼ aR

F0
L sin(ωdt). Elsewhere on the beam, the driving force

is not applied. The constants aL and aR are +1 to indicate if the
driving at the two ends are in-phase (aL ¼ aR ¼ 1) or out-of-phase
(aL ¼ 1, aR ¼ �1). Due to the symmetry of the mode shapes, the
odd modes are even about the middle of the beam (x ¼ 1=2), and
they are driven with an in-phase drive. The even modes are odd
about the middle of the beam and they are driven by an
out-of-phase drive. In our analysis, we use an impulse force in time
to study the frequency response of the system due to a harmonic
drive. In this case, the external drive force is represented as

Fd(x, t) ¼ F0
L

aLδ(t), 0 � x � ξL,
0, ξL , x , ξR,
aRδ(t), ξR � x � 1,

8<
: (31)
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where δ(t) is the Dirac delta function. In the frequency domain the
drive force is then

F̂d(x, ω) ¼ F0
L

aL, 0 � x � ξL,
0, ξL , x , ξR,
aR, ξR � x � 1:

8<
: (32)

The coupling of the spatially extended drive force with the beam
mode shapes is captured by the integral term in Eq. (23). If we next
assume that the spatial variation of the drive force is of equal
spatial extent ξ*, on either side of the beam, we can simplify the
notation further by noting ξL ¼ ξ* and ξR ¼ 1� ξ*. Therefore, ξ*

can vary over the range 0 � ξ* � 1=2 where ξ* ¼ 1=2 corresponds
to a driving force that has been applied over the entire length of
the beam. If we define the integral term in Eq. (23) as ψn and
express the limits of integration using ξ*, we have

ψn(ξ
*) ¼ aL

ðξ*
0
fn(x)dx þ aR

ð1
1�ξ*

fn(x) dx (33)

and

Ŵ(x, ω) ¼ F0L3

EI

X1
n¼1

ψn(ξ
*)fn(x)

C4
n � B(ω)4

, (34)

where the complex amplitude of mode n is

Ŵn(x, ω) ¼ F0L3

EI

� �
ψn(ξ

*)fn(x)

C4
n � B(ω)4

: (35)

The variable ψn(ξ
*) quantifies the magnitude of the coupling of the

spatial drive force with the individual modes of the beam. The
tension in the beam is accounted for by the variation of the mode
shape fn with the applied tension.

For the string, using Eq. (33) yields

Ŵ(x, ω) ¼ F0L
π2FT

X1
n¼1

ψn(ξ
*)fn(x)

n2 � B2(ω)
, (36)

where ψn(ξ
*) can be evaluated to yield

ψn(ξ
*) ¼ � 2

ffiffiffi
2

p

nπ
1� cos(nπξ*)
� 	

: (37)

Equation (37) is valid for even and odd modes of the string where
it is assumed that the odd modes have been driven by a symmetric
drive and the even modes have been driven by an asymmetric
spatial drive. Gathering these results together for the string, we can
represent the oscillations in a more convenient form as

Ŵ(x, ω) ¼ 4LF0
π3FT

X1
n¼1

1� cos(nπξ*)
n n2 � B2(ω)ð Þ sin(nπx), (38)

where the displacement of mode n is

Ŵn(x, ω) ¼ 4LF0
π3FT

� �
1� cos(nπξ*)
n n2 � B2(ω)ð Þ sin(nπx): (39)

The variation of ψn with ξ* is shown in Fig. 6. The coupling
of the spatial driving force with modes 1 through 5 are shown in
panels (a)–(e), respectively. The string result is shown as the black
dashed line and the solid lines approach the string result in order
with increasing tension. In each panel, the four solid lines represent
results for U ¼ 0 (black), 10 (red), 100 (blue), 1000 (green). For
the first and second modes, shown in Figs. 6(a) and 6(b), the mag-
nitudes of ψ1(ξ

*) and ψ2(ξ
*) increase monotonically with increas-

ing tension. However, for the third mode and higher, the coupling
with the driving force is non-monotonic with ξ*.

The variation of ψn with ξ* provides immediate insight into
the relative heights of the peaks in the amplitude spectrum.
Considering only the odd modes, which would be excited by the
symmetric drive, this indicates that as ξ* is increased, the coupling
with modes 3 and 5 will reach a maximum and will then decay
with larger values of ξ*. For example, the relative amplitude of
mode 3 will be largest for an applied driving force with ξ* � 0:35
and the relative amplitude of mode 5 will be significantly reduced
when ξ* � 0:4. Similar insights can be drawn for the even modes
that are driven by an asymmetric driving force. Knowledge of the
ψn(ξ

*) could be used in an experiment to tailor the amplitudes of
the different modes. Figure 6 also indicates the influence of the
tension on these couplings.

D. The amplitude of oscillation of a driven beam with
tension in a fluid

The variation of the amplitude of oscillation with frequency
for increasing tension is shown in Fig. 7 for the beam given in
Table I when it is immersed in air (a) or water (b). Figure 7 shows
the amplitude of the fundamental mode, jŴ(x0, ω)j, measured at
x0 ¼ 1=2 for an external force of magnitude F0 ¼ 2� 10�10 N that
has been applied over the spatial region given by ξ* ¼ 0:3. The five
different curves show the amplitude spectrum of the fundamental
mode for varying amounts of tension for U ¼ 0, 10, 100, 1000, and
a string. As the tension increases, the amplitude of the peak
decreases while its frequency increases. The dramatic spreading out
of the amplitude spectrum when the beam is immersed in water is
evident in Fig. 7(b). A comparison of the amplitudes in Figs. 7(a)
and 7(b) also yields an order of magnitude reduction in the ampli-
tude of the beam motion when immersed in water.

The absolute and relative magnitudes of the amplitude peaks
depend on how the external force is applied. In particular, for the
situation we explore here, the magnitude of the peaks depend on
the spatial region of the beam that is driven as specified by ξ*. The
variation of the magnitude of the peaks is shown in Fig. 8 as a
function of ξ* for a symmetric drive that actuates the odd modes.
The coupling of the drive force with the beam motion is captured
by ψn(ξ

*), which is directly reflected by the variation of the magni-
tude of the peaks in Fig. 8. For example, in Fig. 8(a), the magni-
tudes of the peaks increase monotonically with ξ* as indicated by
the monotonic increase of ψ1(ξ

*) with ξ* shown in Fig. 6(a).
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FIG. 6. The variation of ψn(ξ
	) for the first five modes with the distance covered by the applied driving ξ	 for the symmetric drive of the odd modes (a) n ¼ 1, (c) n ¼ 3,

and (e) n ¼ 5 or the asymmetric drive of the even modes (b) n ¼ 2 and (d) n ¼ 4 . The solid curves are for U ¼ 0 (black), 10 (red), 100 (blue), and 1000 (green), and
the dashed curve is for the string. The solid curves approach the string result in order with increasing tension.

FIG. 7. The variation of the amplitude of flexural oscillations of the first mode (n ¼ 1) with frequency for a beam with increasing tension that is immersed in a fluid. The
symmetric drive has a magnitude of F0 ¼ 2� 10�10 N and a spatial application of ξ	 ¼ 0:3, where the beam is immersed in air (a) or in water (b). On each panel, the
five different curves represent the variation in tension where U ¼ 0 (black), 10 (red), 100 (blue), 1000 (green), and the string (dashed, black). The location of the peak
moves toward higher frequency with increasing tension with the string result furthest to the right. These results are obtained by evaluating jŴ1(x0 ¼ 1=2, ω)j using
Eq. (35) for the beam with tension and using Eq. (39) for the string.
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Similarly, Fig. 8(b) shows how the magnitude of the peak increases
and then decreases with increasing ξ* as indicated by the variation
of ψ3(ξ

*) in Fig. 6(c). The variation of the magnitude of the peaks
of the even modes with ξ* follows the trends indicated by the
appropriate ψn and is shown in Fig. 9.

III. COMPARISON WITH EXPERIMENTS

We have performed experiments on a long and thin doubly
clamped beam in the configuration shown in Fig. 1. In the experi-
ments, the beam motion is driven electrothermally near its left and

right ends. An electron micrograph of the beam is shown in
Fig. 10. The experimental approach has been described in detail
elsewhere13,14 and we provide only the essential details here.

The geometry and density for this beam are specified in
Table I. The value listed for the beam density in Table I is the
experimentally measured value. As a result, we will consider the
density of the beam as a known value. Young’s modulus E in
Table I, on the other hand, is simply a nominal value for silicon
nitride.13 As shown in Fig. 10, the entire beam is suspended in a
cavity. The distance from the beam to the substrate below is
approximately 2 μm. The beam is under high tension, U � 1, as a

FIG. 8. The variation of the amplitude of motion of a beam immersed in air under high tension as a function of ξ	 for the odd modes that are driven using a symmetric
drive force. The beam is specified in Table I, the tension is U ¼ 1000, the magnitude of the drive force is F0 ¼ 2� 10�10 N, and the beam is immersed in air. Each
panel includes five curves for ξ	 ¼ 0:1 (red), 0.2 (blue), 0.3 (black, dashed), 0.4 (green), 0.5 (cyan). These results are obtained by evaluating Eq. (35) for the odd modes
at x0 ¼ 1=2. (a) n ¼ 1, the peak magnitude increases monotonically with increasing ξ	. (b) n ¼ 3, the smallest to largest peak magnitudes occur in the order
ξ	 ¼ 0:1, 0:5, 0:2, 0:4, 0:3. (c) n ¼ 5, the smallest to largest peak magnitudes occur in the order ξ	 ¼ 0:4, 0:1, 0:5, 0:3, 0:2.

FIG. 9. The variation of the amplitude of motion of a beam immersed in air under high tension as a function of ξ	 for the even modes that are driven using an asymmetric
drive force using the same parameters and conventions as Fig. 8. These results are obtained by evaluating Eq. (35) at x0 ¼ 1=4 for n ¼ 2 and at x0 ¼ 1=8 for n ¼ 4.
(a) Mode n ¼ 2, the peak magnitude increases monotonically with increasing ξ	. (b) Mode n ¼ 4, the smallest to largest peaks occur in the order
ξ	 ¼ 0:5, 0:1, 0:4, 0:2, 0:3.
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result of the fabrication process. We quantify a value for U in the
discussion below. We have conducted experiments on this beam
when it is placed in vacuum, air, or water.

The upper surface of the beam contains two U-shaped gold
electrodes near the sidewalls, with one located at the left side and
the other located at the right side, that are used for the electrother-
mal drive. The gold electrodes are evident in Fig. 10 by their lighter
color near the locations where the beam attaches to the sidewalls.
When a sinusoidally varying current passes through the gold elec-
trodes, the beam is locally heated due to Joule heating. The heating
causes the beam to expand, which results in beam deflections since
the beam is fixed at either end. The odd modes of the beam are
actuated when the current in the two electrodes is in-phase (sym-
metric drive) and the even modes are actuated when the current is
90
 out-of-phase (asymmetric drive). The deflection of the beam is
measured optically at location x0, which is typically chosen to corre-
spond with an anti-node of the beam mode that is being measured.

We next describe the procedure used for comparing the theo-
retical predictions with the experimental measurements. The con-
stants U and FT are required in the theoretical expressions to
describe the amount of tension in the beam. In addition, we will
introduce an effective length L* of the beam in order to quantita-
tively describe the magnitudes of the natural frequencies for the con-
ditions of the experiment. The constants ξ* and F0 are required to
describe the spatially varying drive force that is applied. Detailed
measurements of the tension and the drive force are difficult to
obtain directly, and, in our analysis, we determine their experimental

values indirectly using only measured frequencies, amplitudes, and
the density of the beam which are typically more accessible.

The values of U , L*, and FT are determined using measure-
ments of the beam’s natural frequencies ωn,exp in a vacuum where
n ¼ 1, 2, . . . , N . We have used N ¼ 5 but the approach remains
valid if more or fewer natural frequencies are used.

1. Determine the tension parameter U . The value of U deter-
mines the nondimensional natural frequencies Ωn and their
spacing in the frequency domain as the roots of Eq. (7). We
determine U as the value that minimizes the total error EU
in the ratio of each mode with the fundamental frequency
when compared with the experimentally measured values.
Specifically, U is chosen as the value that minimizes EU ,
where

EU ¼
XN
n¼2

Ωn

Ω1
� ωn,exp

ω1,exp

� �2

, (40)

and the subscript exp indicates the experimentally measured
natural frequencies. This step determines U and Ωn. For
large values of the tension, it is important to measure ωn=ω1

in vacuum and not approximate their values using measure-
ments in air, which can lead to a significant error in the
determination of U .

2. Determine the effective length L*. The effective length is chosen
to obtain quantitative agreement with the dimensional natural
frequencies measured in experiments. For each mode n, an
effective length can be computed using Eq. (6) and requiring
ωn ¼ ωn,exp. We define the effective length L* as the mean of
these values, which can be expressed as

L* ¼ 1
N

XN
n¼1

EIΩ2
n

μω2
n,exp

 !1=4

, (41)

where Ωn is the nondimensional natural frequency of the beam
with tension.

3. Determine the tension force FT . The tension force is found by
evaluating Eq. (5) to yield

FT ¼ 2EIU
L*2

: (42)

Applying this procedure to the beam used in the experiments
yields the values given in the first row of Table II. The large value
of the tension parameter, U ¼ 4538, indicates that the beam is
under very high tension, which immediately suggests that a string
description may be useful. The effective length L* is larger than the
length of the beam L. We emphasize that the effective length is also
being used to account for features of the experiment that has not
been explicitly included in the theoretical description. This includes
the presence of the ledge in which the beam is attached to its
edges, the gold electrodes that are used for the electrothermal drive,
and any material inhomogeneities that may be present. Last,
we note that we have used a nominal value for Young’s modulus,

FIG. 10. An electron micrograph of the doubly clamped beam used in the
experiments. The beam has a length L ¼ 40 μm, width b ¼ 0:9 μm, thickness
h ¼ 0:1 μm, and density ρs ¼ 2960 kg=m3. The beam is suspended 2 μm
above the floor. The dark region on the floor below the beam is a residue left
over from the fabrication process.

TABLE II. Parameters required in the theoretical description that are determined
using experimental measurements of the natural frequencies. Equation (40) is used
for the tension parameter U, Eq. (41) is used for the effective length L*, and
Eq. (42) is used for the tension force FT. For the string, FT is determined by
Eq. (43). The geometry and material properties of the beam are given in Table I.

L* FT
Theory U (μm) (μN)

Beam 4538 48.0 88.6
String … … 65.0
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E ¼ 300 GPa. Using this approach results in theoretical predictions
of the first five natural frequencies of the beam with tension that
have errors of less than 0.3% when compared with the experimen-
tally measured values. The last row of Table II includes the value of
FT that is for the string description. In this case, ω1,exp is used to
determine FT as FT ¼ c2μ, which can be expressed as

FT ¼ ω2
1,exp

L2

π2
μ: (43)

The theoretical prediction also requires values of ξ* and F0,
which are used to describe the spatially varying drive force that is
applied. In the experiments, the magnitude of the driving was set dif-
ferently depending upon if the beam was in vacuum, air, or water. The
driving magnitude in the experiments was then maintained at a cons-
tant value for the symmetric and asymmetric drive measurements. In
order to account for the differences in the symmetric and asymmetric
driving of the experiments, we determined values of ξ* and F0 for each
measurement that we used in our comparison between theory and
experiments. We point out that the symmetric and asymmetric
driving measurements are treated separately to yield values of ξ* and
F0 that we use in our theoretical predictions. For each measurement,
we have used the following steps to determine ξ* and F0.

1. Determine the spatial application of the driving force ξ*. The
value of ξ* is used to determine the ratio of the amplitudes mea-
sured at their peak frequency. For the odd modes, driven by the
symmetric drive, ξ* is determined as the value that minimizes
the total error, Eamp, in the experimentally measured ratios of
the amplitude of the higher modes at their peaks to the magni-
tude of the first mode at its peak. All odd modes are measured
at x0 ¼ 1=2. Therefore, for the odd modes, ξ* is the value that
minimizes Eamp, where

Eamp ¼ jŴ3(x0, ω3,f )j
jŴ1(x0, ω1,f )j

� jŴ3(x0, ω3,f )jexp
jŴ1(x0, ω1,f )jexp

 !2

þ jŴ5(x0, ω5,f )j
jŴ1(x0, ω1,f )j

� jŴ5(x0, ω5,f )jexp
jŴ1(x0, ω1,f )jexp

 !2

: (44)

Similarly, for the even mode experiments, ξ* is the value that
minimizes

Eamp ¼ jŴ4(x0, ω4,f )j
jŴ2(x0, ω2,f )j

� jŴ4(x0, ω4,f )jexp
jŴ2(x0, ω2,f )jexp

 !2

, (45)

where x0 ¼ 1=4 for mode 2 and x0 ¼ 1=8 for mode 4.
2. Determine the magnitude of the external force F0. The value of

F0 is used to set the overall magnitude of the amplitudes of the
modes at their peak frequency. Note that in the previous step, it
was the ratio of the magnitudes that were determined and not
the overall magnitude. F0 is determined as the value required for
the amplitude of the first mode to agree with the experimentally
measured value. For the odd mode experiments, this can be
expressed as

jŴ1(x0, ω1,f )j ¼ jŴ1(x0, ω1,f )jexp, (46)

where x0 ¼ 1=2. For the even mode experiments, this becomes

jŴ2(x0, ω2,f )j ¼ jŴ2(x0, ω2,f )jexp, (47)

where x0 ¼ 1=4. Combined with the choice of ξ* in the previous
step, this ensures that peak magnitude of the amplitude of the
first mode agrees with experimental measurements.

The values of ξ* and F0 are given in Table III. The first two
rows show the parameters for the beam theory and the last two
rows show the parameters for the string theory. The electrothermal
driving is tailored individually for each experiment, therefore, our
values of ξ* and F0 also vary with each experiment. The spatial
extent of the applied force ξ* for the odd mode experiments, for
both air and water, encompasses approximately 40%–55% of the
beam’s upper surface when the driving at both ends of the beam
are included. This is a much larger distance than the physical
region of the beam in contact with the gold electrodes as shown in
Fig. 10. This illustrates the complexity of the electrothermal drive.
Our model suggests that to represent the electrothermal drive as a
uniformly applied harmonic force requires a much larger spatial
application than what is covered by the electrodes in order to yield
the measured amplitudes of deflection. Our value of ξ* provides a
measure of the effective spatial extent of this driving when repre-
sented as a harmonic force with a constant magnitude. It would be
an interesting study to explore the details of the electrothermal
drive in depth. Our intention here is not to focus on the physics of
one particular driving mechanism, but rather to explore in general
how a spatially varying drive affects the dynamics of a beam
immersed in a fluid over a wide range of tension.

The magnitude of F0 is more than an order of magnitude
larger for the experiment in water when compared to the experi-
ment in air. In general, the voltages used for the electrothermal
driving are set to larger values when a more viscous and denser
fluid is used in order to achieve a desired magnitude of
fluctuations.

TABLE III. Parameters used in the theoretical description of the external driving that
are determined using experimental measurements. ξ* specifies the spatial region of
the beam where the driving force is applied and F0 is the magnitude of the driving
force. ξ* and F0 depend on the experiment as indicated by the fluid used. These
parameters are determined in order from left to right as described in Sec. III. Rows
1 and 2 are for the beam theory with tension and rows 3 and 4 are for the string
theory.

F0 F0
ξ* air ξ* water

Theory Modes air (nN) water (nN)

Beam Odd 0.275 0.13 0.26 1.69
Beam Even 0.225 0.15 0.195 1.69
String Odd 0.275 0.15 0.26 1.96
String Even 0.225 0.18 0.195 1.96
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A. The beam immersed in air

We first present a comparison of the theoretical prediction
with experimental measurements for the case when the beam is
immersed in atmospheric air. It is important to emphasize that the
hydrodynamic function Γ(ω), introduced in Eq. (18), assumes that
the fluid obeys the continuum Newtonian approximation for the
length and time scales under consideration.3,12 However, for nano-
scale devices in air, this assumption can be violated.20 The impor-
tant nondimensional numbers that provide insight into this issue
are the Knudsen number Kn and the Weissenberg number Wi. The
Knudsen number can be estimated as the ratio of length scales
Kn ¼ λ=b where λ is the mean-free path of air and b is the beam
width. The Weissenberg number is the ratio of time scales
Wi ¼ τ=ω�1 where τ is the relaxation time and ω�1 is the inverse
of the oscillation frequency of interest for the beam. Using λ � 100
nm for atmospheric air yields Kn � 0:1 and using a relaxation
time20 of τ � 8� 10�10 s yields Wi � 0:1 if we use the frequency

of the fifth mode of the beam. The scaling shown in Ref. 20 sug-
gests that the continuum approximation for the hydrodynamic
function is satisfactory when KnþWi & 1. In light of this, we
expect that the continuum description will remain valid for the
range of measurements we have conducted in air.

The amplitude spectra are shown in Fig. 11 for the odd
modes. The parameters used in the beam theory are given in
Table II. Figure 11(a) shows the comparison for the fundamental
mode where the solid line is the theoretical prediction of the beam
theory given by Eq. (35) using n ¼ 1 and the open circles are the
experimental measurements. The experiment uses the symmetric
electrothermal drive and the motion of the beam is measured at
x0 ¼ 1=2 for all of the odd modes. We note that for air, it is suffi-
cient to represent the amplitude spectrum using only the mode of
interest, as opposed to the full mode expansion, since the peaks of
the different modes are sharp and well separated in frequency. Also
included is the prediction using the string description, given by

FIG. 11. The frequency dependent amplitude of oscillation for the odd modes when the beam is immersed in air. Open circles are experimental measurements, the solid
lines are the theoretical prediction using beam theory given by Eq. (35) with n ¼ 1, 3, 5, and the dashed lines are the string prediction given by Eq. (39) with n ¼ 1, 3, 5.
The beam motion is evaluated at x0 ¼ 1=2 and a symmetric driving force is used. See Table II for detailed information about the specific properties. (a)–(c) show results
for modes n ¼ 1, 3, and 5, respectively.

FIG. 12. The amplitude spectrum for the even modes when the beam is immersed in air. The open circles are the experimental measurements, the solid curve is the
theoretical prediction using Eq. (35) and n ¼ 2 and 4 and the dashed curve is the string prediction. (a) n ¼ 2, measured at x0 ¼ 1=4. (b) n ¼ 4, measured at x0 ¼ 1=8.
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Eq. (39) using n ¼ 1, which is represented as the dashed line. The
dashed line is nearly indistinguishable from the solid line indicating
excellent agreement.

The comparison between theory and experiment for mode 3 is
shown in Fig. 11(b), where the agreement between the beam theory
and the experiment is excellent. The string approximation now
shows some error in the location of the peak frequency as expected
since the string approximation is the limit of infinite U and the
actual beam has a large but finite value of U . We would like to
highlight that the peak of mode 3 for the string description is less
than the frequency of the peak for the beam theory. This is because
we have set FT for the string description to yield the experimentally
measured fundamental frequency as shown in Fig. 11(a). The
spacing of the peaks in frequency space is smaller for the string
than for the beam with tension as shown in Fig. 3(b). Therefore,
the peak frequency of the string is lower in Fig. 11(b) than that of
the beam. In fact, for this reason, all of the string predictions that
we will show will include a shift toward lower frequencies for this
reason. However, we emphasize that the string approximation rep-
resents mode 3 quite accurately despite this shift in frequency.

Figure 11(c) illustrates the comparison for mode 5 where the
agreement with the beam theory is good for the shape and location
of the amplitude spectrum; however, it significantly under predicts
the magnitude. The error in the magnitude of the motion of mode
5 is expected to be due to the coupling of the electrothermal drive
to mode 5, which is stronger than what is described by our model.
The string approximation is included as the dashed line, which
again is similar to the result from the beam theory with a shift in
frequency.

Figure 12 shows the amplitude spectra for the even modes
where (a) shows the second mode and (b) shows the fourth mode.
The agreement between the beam theory and experiment is excel-
lent. The string description is also very good but with the addition
of a shift in frequency as expected.

The excellent agreement of the string description for the
shape and magnitude of the amplitude spectra can be made more
clear using a normalized frequency as shown in Fig. 13. The fre-
quency has been normalized by the frequency of the amplitude

peak of that mode in fluid such that the peak occurs at frequency
of unity for each curve. The amplitude spectrum for the beam
theory is the solid line and for the string theory, it is the dashed
line. Figure 13 shows results for modes 3–5 in panels (a)–(c),
respectively. The two descriptions are nearly indistinguishable
when represented in this way. This clearly illustrates the usefulness
of the string description for beams with very high tension.

B. The beam immersed in water

Figure 14 shows the amplitude spectra of the beam when it is
immersed in water. When the beam is immersed in water, there is
significant reduction in the frequencies of the peaks as well a
broadening of the peaks. As a result of the peak broadening, the
response from the different modes overlap significantly and it is
not as useful to show the mode individually using Eq. (35) but to
include a representation of the full modal expansion given by
Eq. (34).

Figure 14(a) shows the amplitude spectrum for the odd modes
that are actuated by the symmetric drive and which are measured
at x0 ¼ 1=2. The experimental results are the open circles and the
solid line is the theoretical prediction using Eq. (34) over odd
modes where the infinite series is truncated at n ¼ 5. The drastic
reduction in the frequency of the fundamental mode is clearly
evident with a value of 1.8 MHz. Mode 3 is also visible in this plot
with a peak frequency of approximately 7MHz. The string predic-
tion is included as the dashed line, which shows excellent agree-
ment. Since water has a much larger density and viscosity than that
of air, the spectra are dominated by the fluid properties. The small
difference in the tension of the beam and string descriptions is less
important as a result. The deviation between the theoretical predic-
tions and the experimental measurement at very small frequency is
a result of low frequency contributions in the experiments that are
not included in our model.

Figure 14(b) shows the amplitude spectrum for mode 2 of the
beam when driven asymmetrically and immersed in water. The
experimental measurement of the beam deflection is at x0 ¼ 1=4.
This location is near an anti-node for mode 4 and, therefore, it

FIG. 13. A comparison of the beam and string theory descriptions of the amplitude spectra for the higher order modes of a beam immersed in air as a function of the
normalized frequency. Solid lines are beam theory and dashed lines are the string prediction. The frequency, for each description, has been renormalized by its peak
frequency in fluid fn,f . (a) n ¼ 3, (b) n ¼ 4, and (c) n ¼ 5.
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does not contribute here. The theoretical predictions use modal
expansions that include modes 2, 4, and 6 in Eq. (34) for the beam
with tension and in Eq. (38) for the string. The agreement between
the theory and experiment is very good.

IV. CONCLUSION

We have developed theoretical approaches to describe the
dynamics of externally driven nanoscale beams that are under high
tension and immersed in a viscous fluid. We have specifically
focused upon doubly clamped beams that are driven externally
using a spatially varying drive force applied near the ends of the
beam. Our results are valid for the entire range of tension, which
includes the zero tension limit of the Euler–Bernoulli beam and the
infinite tension limit of a string. By developing our approach as a
modal expansion, it is valid for the higher modes of the beam and
it is also valid for measurements that are taken at any spatial loca-
tion of the beam. The string description reduces to much simpler
expressions that we anticipate will be very useful in the design of
future devices.

We have compared our theoretical predictions with an experi-
ment that electrothermally drives the motion of a beam with high
tension with a symmetric or asymmetric approach to drive the odd
and even modes, respectively. Our model yields quantitative agree-
ment with the experiment for the first several modes of oscillation.
A more specialized model of the electrothermal driving would be
needed for an improved description of this experiment and this
would be an interesting avenue of future research.

It is important to highlight that full-scale numerical simula-
tions of nanoscale beams immersed in a viscous fluid remain very
computationally expensive. This is particularly true if complex
driving mechanisms, such as an electrothermal drive, are included,
and if multiple modes of oscillation are desired, which require a
large range of spatial and temporal scales to be resolved. The theo-
retical description developed here provides important insights that
will be useful for future experimental and theoretical efforts to
explore these questions and nanoscale technologies further.
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